
Delegated Persist Ordering
Aasheesh Kolli∗, Jeff Rosen†, Stephan Diestelhorst‡, Ali Saidi‡, Steven Pelley†,

Sihang Liu∗, Peter M. Chen∗ and Thomas F. Wenisch∗
∗ University of Michigan {akolli,liush,pmchen,twenisch}@umich.edu

† Snowflake Computing {jeff.rosen,steven.pelley}@snowflake.net
‡ ARM {stephan.diestelhorst,ali.saidi}@arm.com

Abstract—Systems featuring a load-store interface to persistent
memory (PM) are expected soon, making in-memory persis-
tent data structures feasible. Ensuring persistent data structure
recoverability requires constraints on the order PM writes
become persistent. But, current memory systems reorder writes,
providing no such guarantees. To complement their upcoming
3D XPoint memory, Intel has announced new instructions to
enable programmer control of data persistence. We describe the
semantics implied by these instructions, an ordering model we
call synchronous ordering.

Synchronous ordering (SO) enforces order by stalling execu-
tion when PM write ordering is required, exposing PM write
latency on the execution critical path. It incurs an average
slowdown of 7.21× over volatile execution without ordering in
PM-write-intensive benchmarks. SO tightly couples enforcing
order and flushing writes to PM, but this tight coupling is
unneeded in many recoverable software systems. Instead, we
propose delegated ordering, wherein ordering requirements are
communicated explicitly to the PM controller, fully decoupling
PM write ordering from volatile execution and cache man-
agement. We demonstrate that delegated ordering can bring
performance within 1.93× of volatile execution, improving over
SO by 3.73×.

Keywords — persistent memory, memory persistency, re-
laxed consistency, delegated ordering

I. INTRODUCTION

New persistent memory (PM) technologies with the poten-
tial to transform how software manages persistent data will
soon be available. For example, Intel and Micron have an-
nounced their 3D XPoint memory technology for availability
in 2017 [1], and competing offerings may follow [2]. Such
devices are expected to provide much lower access latency
than NAND Flash, enabling access to persistent data with a
load-store interface like DRAM rather than the block-based
I/O interface of Flash and disk. Persistent memory systems
will allow programmers to maintain recoverable data structures
in main memory.

Ensuring recoverability of persistent data structures requires
constraints on the order writes become persistent [3], [4], [5],
[6], [7], [8], [9], [10], [11], [12], [13], [14], [15]. At the
same time, it is desirable that PM accesses are cacheable,
both to hide access latency and to enable write coalescing
to conserve write bandwidth and lifetime for devices subject
to wearout. Conventional memory systems delay, combine,
and reorder writes to memory at multiple levels, and do not
enforce any particular correspondence between the order stores

are executed and writes to memory are performed. Some
proposals enable recoverability by requiring persistence at all
memory hierarchy levels [5], [16], [17], [18], ensuring writes
are persistent as soon as they retire. However, such schemes
either require replacing SRAM caches with PM or mechanisms
to flush caches rapidly upon failure, which may be impractical
if the aggregate cache capacity is large and challenging to
implement for non-power faults (e.g., kernel panic).

Recent work proposes that programming systems be ex-
tended with a memory persistency model; an explicit spec-
ification and programming interface to constrain the order
writes become persistent [4]. A memory persistency model
is analogous to the memory consistency model that governs
the ordering of reads and writes to shared memory, but instead
constrains the order PM writes become persistent, an operation
we refer to as a persist.

To complement upcoming memory technology offerings,
Intel [3] has announced instruction set extensions to enable
programmer control of data persistence. The clwb instruction
allows programmers to initiate write back of specific addresses
to PM, and the pcommit and sfence instructions enable
order enforcement among these writebacks and subsequent
execution. To our knowledge, no prior academic study has
examined the semantics and performance implications of these
extensions. We describe the persistency model implied by
the semantics of these instructions; we refer to the model as
synchronous ordering.

Synchronous ordering enforces order by stalling execution,
preventing instructions ordered after a pcommit from retiring
until prior PM writes complete. However, this approach tightly
couples volatile execution and persistent writes, placing PM
write latency on the execution critical path. As we will show,
these stalls can result in a 7.21× slowdown in workloads with
frequent PM writes.

Synchronous ordering couples two orthogonal operations:
prescribing an order between PM writes and flushing the writes
to persistent storage. However, coupling these operations is
often unnecessary for software system recoverability, as data
structure consistency depends principally upon the order writes
become persistent [19], [9], [4], [13]. In many contexts,
volatile execution may proceed ahead of properly ordered
PM writes without compromising recoverability, hiding PM
latency. When rare failures occur, some writes may be lost,
but data structure consistency is maintained (e.g., journaling
file systems maintained on disks [9]).978-1-5090-3508-3/16/$31.00 © 2016 IEEE

In this paper, we explore a new implementation approach
to enforcing persistency model ordering requirements for PM
writes. Instead of enforcing ordering through stalls, we inves-
tigate an implementation approach, which we call delegated
ordering, that communicates partial ordering requirements
mandated by the persistency model explicitly to the PM
controller. Delegated ordering decouples persistency model
implementation from both volatile execution and cache man-
agement. Execution and communication via shared memory
proceed while PM writes drain. Caches remain volatile and
may communicate through cache coherence and evict blocks
at will. Instead, our approach maintains persistent writes
alongside the cache hierarchy in per-core persist buffers. Using
annotations added to coherence transactions, the persist buffers
observe and track persist order dependencies mandated by the
persistency model. Together, they serialize PM writes into a
partially ordered buffer at the PM controller, which may then
schedule PM writes to exploit available bank concurrency.

Delegated ordering represents a fundamental departure fr-
om existing persistency implementations and common ap-
proaches for enforcing (volatile) write ordering for relaxed
memory consistency. Relaxed consistency is often imple-
mented like synchronous ordering, relying on stalling (e.g.,
at memory fence instructions) to prevent mis-ordering the
visibility of memory operations. Since communication via
cache coherence is comparatively fast, the cost of these stalls is
tractable, and can be further hidden through speculation [20],
[21], [22], [23], [24], [25]. In contrast, storing to PM is
relatively slow, and we show that stalling operations at the
processor to enforce ordering severely degrades performance.
Delegated ordering instead tracks write ordering constraints
explicitly. Execution does not stall unless buffering resources
in the persist buffers and at the PM controller are exhausted
or the programmer explicitly requests the stall (e.g., before
issuing an irrecoverable action).

We evaluate delegated ordering by implementing it for
buffered strict persistency [4], [13] (PM writes must reflect the
order stores become globally visible, but their persistence may
be delayed) and compare its performance to synchronous or-
dering. We evaluate both approaches in a cache hierarchy that
implements ARM’s relaxed memory consistency model, which
allows reordering and concurrency among stores between
ordering points. We implement a series of PM-write-intensive
benchmarks, adding minimal fence instructions required for
correctness under each model, and evaluate performance using
the gem5 simulation infrastructure [26]. We compare both
approaches for different PM technologies. In summary, our
contributions are:
• We analyze the semantics and performance of synchr-

onous ordering—the persistency model implied by Intel’s
ISA extensions for PM [3]—and demonstrate that it
results in an 7.21× slowdown on average relative to
volatile execution without ordering.

• We propose delegated ordering, an approach to memory
persistency implementation that exposes partial ordering
constraints explicitly to the PM controller.

• We evaluate delegated ordering and demonstrate that it
improves performance by 3.73× on average over syn-
chronous ordering for PM-write-intensive benchmarks,
coming within 1.93× of volatile execution without order
enforcement.

II. SYNCHRONOUS ORDERING

In today’s systems, enforcing the desired order of persists to
PM is complicated by the presence of programmer-transparent
hardware structures (e.g., caches and memory controllers) that
actively re-order writes to gain performance. Programmers
must choreograph explicit cache flush operations (for instance
clflush in x86 and dccmvac in ARM v7) to achieve the
desired order of PM updates.

Prior to newly proposed instruction extensions, program-
matically enforcing a desired PM write order was challenging
and, in some systems, impossible [27]. Bhandari and co-
authors [28] examine the subtle x86 coding idioms required
to ensure proper ordering. These idioms rely on clflush to
explicitly write back dirty lines, requiring hundreds of cycles
to execute [28] and invalidating the cache line, incurring a
compulsory miss upon the next access.

Intel’s recently announced extensions [3] provide mecha-
nisms to guarantee recovery correctness and improve upon the
performance deficiencies of clflush. Nevertheless, we will
show that these extensions still incur large stalls, motivating
our pursuit of higher performance mechanisms. We first ex-
plore the semantics and then the performance implications of
these extensions.

A. Semantics

Synchronous ordering (SO) is our attempt to describe the
persistency model implied by the semantics of Intel’s ISA
extensions [3]. We briefly describe the most relevant of these
new instructions:
• clwb: Requests writeback of modified cache line to

memory; clean copy of cache line may be retained.
• pcommit: Ensures that stores that have been accepted

to memory are persistent when the pcommit becomes
globally visible.

Executing a clwb instruction, by itself, does not ensure data
persistence because the PM controller is permitted to have
volatile write queues that may delay a PM write even after
the clwb operation is complete. The semantics of pcommit
are subtle; it is a request to the PM controller to flush its
write queues. However, pcommit execution is not implicitly
ordered with respect to preceding or following stores or clwb
operations. Hence, neither pcommit nor clwb alone assure
persistence.

A store operation to cacheable (“write back”) memory is
assured to be “accepted to memory” when a clwb operation
ordered after the store becomes globally visible ([3] p. 10-
8). However, since pcommit is not ordered with respect to
the completion of clwb operations, an intervening sfence
is needed to ensure the clwb is globally visible. Similarly,

a fence operation is required after the pcommit to order its
global visibility with respect to subsequent stores.

With these two instructions, stores on one thread to ad-
dresses A and B can be guaranteed to to be updated in PM in
the order A < B, using the following pseudo-code:

st A;clwb A;sfence;pcommit;sfence;st B;

We refer to the code sequence
sfence; pcommit; sfence as a sync barrier. The
first sfence orders the pcommit with earlier stores
and clwbs, while the second orders later stores with the
pcommit.

B. Performance

SO’s overhead can be broken into two components:
• The overhead due to clwb instructions. clwb writes

modified data back from the cache hierarchy to the
memory controller. Each clwb must snoop all caches
(including private caches of peer-cores) for a cache block
in dirty state and write it back to the PM. Effectively,
each clwb instruction incurs a worst-case on-chip access
latency.

• The overhead due to pcommit instructions. A pcommit
does not complete until all writes that have been accepted
to memory are persistent (regardless of which processor
issued them).

Modern out-of-order (OoO) cores can often hide some access
latencies, however the sfence instructions (required for
correct ordering) preceding and following a pcommit will
expose the latency of the clwb and pcommit operations.
A PM write may take several times as long as a DRAM
write [29] and drastically reduces the effectiveness of OoO
mechanisms.

We study the performance of SO over three different PM
designs:
• DRAM: a battery-backed DRAM.
• PCM: a Phase Change Memory (PCM) technology.
• PWQ: a persistent write queue at the PM controller that

ensures data becomes durable when it arrives at the
PM controller (e.g., because a supercapacitor guarantees
enqueued writes will drain despite failure). We assume a
PCM main memory.

PWQ provides freedom to the PM controller to arbitrarily
schedule writes for performance without compromising per-
sistency guarantees. Studying these three configurations high-
lights the technology independence of the observations made
in this paper. We contrast performance under two different
persistency models:
Volatile: Under this model, benchmarks are run without sup-
port for persistence and are vulnerable to corruption in the
event of a failure. We use this as a baseline to measure the
costs of persistence.
Synchronous Ordering (SO): Under this model, the neces-
sary clwb, sfence, and pcommit operations are inserted
ensuring data persistence to PM. Note that in case of PWQ,

PM design Geo. mean Range

PWQ 1.54× 1.12× to 2.1×
DRAM 2.97× 1.16× to 7.96×
PCM 7.21× 1.33× to 35.15×

TABLE I: Slowdowns due to SO over volatile execution.

ensuring the data reaches the PM controller in the desired order
is sufficient to guarantee correct recovery. Hence, SO requires
only clwb and sfence operations, without any pcommits.
The latency of the cache flush operations is exposed on the
execution critical path (at the sfence), but the PM write
itself is not. Increased execution times for SO (over a baseline
volatile execution) for our PM-centric benchmarks (please see
Section V for methodology details) are shown in Table I:

C. Discussion

SO suffers from four main drawbacks that hamper its
performance and usability. First, it couples the operation that
prescribes the order between PM writes with the operation
that flushes the writes to persistent storage. In many contexts,
stalling execution until the flush is complete is not needed
to assure data consistency and recoverability. Rather, such
stalling is needed only before irrecoverable side effects, such
as sending a network packet. We believe that one of the major
deficiencies of the proposed model is that no mechanisms are
provided to ensure ordering of writes to PM without requiring
completion.

Second, a programmer must explicitly enumerate the ad-
dresses for which persistence is needed via flush operations.
Although flexible, this interface greatly complicates software
development. For example, one cannot easily construct a soft-
ware library that provides transactional persistence semantics
for a user-supplied data structure while hiding the details of
the persistency model (the user must supply a list of addresses
requiring clwb operations). In contrast, fence operations in
relaxed consistency [30] and relaxed persistency [4] do not
require addresses to be enumerated, facilitating synchroniza-
tion primitives in libraries.

Third, the pcommit operation does not complete until
all operations accepted to memory are persistent, even those
issued by other threads. In contrast, memory fences typically
stall only until preceding operations from or observed by
the same thread are globally visible. A pcommit may be
significantly delayed by PM writes of an unrelated application,
where the relative PM write interleaving is immaterial.

Finally, the clwb instruction relinquishes write permission
to a cache block, which will unnecessarily incur a coherence
transaction to obtain write permission if the block is written
again. Coherence state is orthogonal to persistency.

Interestingly, ARM has also recently announced a new
instruction for persistence support as part of ARM V8.2 [31].
The new instruction dccvap (data cache clean virtual address
to point of persistence), is similar to clwb in that, it forces a
writeback of a cache block. However, unlike clwb, dccvap
requires the writeback to become persistent (reach PM), rather

than just being accepted at the PM controller, obviating the
need for a separate pcommit-like instruction. The dccvap
instruction implies a different synchronous persistency model
than SO (which is based on Intel’s clwb, and pcommit
instructions). However, a complete ARM V8.2 specification
is not yet available.

We can address synchronous ordering’s deficiencies with
delegated ordering. Before we describe delegated ordering
(Section IV), we next discuss the persistency model and
semantics provided by our approach.

III. MEMORY PERSISTENCY

Delegated ordering is an implementation strategy for persis-
tency models that allow volatile execution to proceed ahead
of store persistence—a store may retire and become globally
visible in shared memory before it is persistent. Synchronous
ordering allows visibility and persistence to deviate only until
a pcommit is executed. Several persistency models proposed
in the literature similarly allow such buffering, including
BPFS [7], buffered strict persistency [4], [13], (buffered) epoch
persistency [4], [13], and strand persistency [4]. Prior models
have been proposed and evaluated in the context of sequential
consistency. However, in this work, we target the ARM v7
architecture [32], which provides a relaxed consistency model.

In this section, we detail the semantics of buffered strict
persistency when applied to ARMv7 consistency, yielding a
model that we call relaxed consistency buffered strict per-
sistency, or RCBSP. Because ARMv7 already allows store
reordering between memory fences, RCBSP enables concur-
rency among persist operations similar to what is allowed by
BPFS and under epoch persistency in sequentially consistent
systems, without the need to introduce new fence instructions
for persists. We first provide brief background and then
precisely specify RCBSP using nomenclature from Pelley [4]
and notation derived from Kolli [33].

A. Background

Formally, we express an ordering relation over memory
events loads, stores, and fences (collectively accesses). The
term persist refers to the act of durably writing a store to
persistent memory. We assume persists are performed atom-
ically (with respect to failures) at naturally aligned 8-byte
granularity. By “thread”, we refer to execution contexts—cores
or hardware threads. We use the following notation:
• Li

a: A load from thread i to address a
• Si

a: A store from thread i to address a
• F i: A fence (full strength dmb) from thread i.
• Mi

a: A load/store/fence by thread i (to address a)
Further, we use the following notation for dependencies

between memory events:

• Mi
a

d−→Mi
b: An addr/data/control dependence from Mi

a to
Mi

b, two accesses on the same thread.

• Si
a

r f−→ L j
a: A load “reads from” [34] a prior store.

• Li
a

f r−→ S j
a: A store ”from reads” [34] a prior load.

We reason about three ordering relations over memory
events, local memory order, volatile memory order and persist
memory order.

Local memory order (LMOi) is an ordering relation over
all memory events (loads and stores), observed by thread i,
prescribed by the memory consistency model [30]. In relaxed
consistency models, especially non-multi-copy-atomic models
like ARMv7 [34], [35], different threads may legally disagree
on the order in which stores become visible. It is important to
note that, no thread disagrees with at least a subset of ordering
relations, for example, coherence order and orderings enforced
by fence cumulativity [35], [34], [36], [37]. Volatile memory
order (VMO) is an ordering relation over all memory events as
observed by a hypothetical thread that atomically reads all con-
tents of persistent memory at the moment of failure (defined
as “recovery observer” in [4]). Note that VMO agrees with all
other threads w.r.t. coherence order and fence cumulativity.
Persist memory order (PMO) is an ordering relation over all
memory events but may have different ordering constraints
than any LMOi or VMO. PMO is governed by the “memory
persistency model” [4].

We denote these ordering relations as:
• A≤li B: A occurs no later than B in LMOi

• A≤v B: A occurs no later than B in VMO
• A≤p B: A occurs no later than B in PMO

An ordering relation between stores in PMO implies the
corresponding persist actions are ordered; that is,

A≤p B→ B may not persist before A.
Based on the relationship between VMO and PMO, Pelley

classifies persistency models into two types: strict and relaxed.
Under strict persistency, the PMO is the same as VMO, that is,
a programmer uses the memory consistency model to govern
both store visibility and the order in which stores persist.
Under relaxed persistency, PMO and VMO may differ, that is,
a programmer needs to reason separately about store visibility
and the order in which stores persist.

The motivation for relaxed persistency arises because of
the use of conservative consistency models such as sequential
consistency (SC) and total store order (TSO). These consis-
tency models require a strict order (in VMO) for all stores
and allow little re-ordering or coalescing. Pelley shows that
following the same strict order for persists (each of which
could take 100s of nano-seconds [29]), hinders performance,
much like synchronous ordering. Relaxed persistency models
allow programmers to impose a different set of constraints for
the PMO than the VMO, thereby allowing more re-order-ing
and coalescing in the PMO. Pelley shows that the additional
parallelism afforded to persists by relaxed persistency models
significantly improves performance.

Even though relaxed persistency models improve perfor-
mance by exposing additional parallelism, they increase the
burden on the programmer by forcing her to reason about
two different memory models. ARMv7 consistency already
enables parallelism among memory accesses and requires
reasoning about proper ordering of shared memory accesses
(including non-multi-copy-atomic stores). In this context, we

consider the alternate choice of using strict persistency. This
choice of relaxed consistency and strict persistency exposes
persist parallelism but does not saddle the programmer with an
additional memory model. Instead, reasoning about recovery
is akin to reasoning about an additional thread.

B. Buffering

Pelley further suggests that buffering persists in hardware
will expose more opportunities to re-order and coalesce, thus
improving performance. Buffering implies (under strict persis-
tency) that some stores, which have already been executed by
a processor and are visible to other processors, might not yet
have been persisted to PM. However, the hardware (memory
hierarchy) guarantees that, eventually, all these stores will per-
sist in the order dictated by the VMO. This ordering guarantee
is the key distinction between buffered strict persistency and
the behavior of writeback caches under synchronous ordering,
in which PM writes drain from the cache hierarchy in arbitrary
order in the absence of clwb and pcommit instructions.

The coupling must be enforced by an additional mechanism
that records dependencies between stores (both inter- and
intra-thread) and honors the recorded dependencies while
persisting the stores. BPFS [7] and epoch barriers [13] achi-
eve such ordering by constraining L1 cache write backs. We
propose new ordering mechanisms, decoupled from the ca-
ches, in Section IV.

Buffering improves performance by ensuring that the mem-
ory hierarchy does not have to persist an executed store
immediately, but can perform the persist eventually, as long
as the correct order is maintained [4], [13]. Volatile execution
and cache coherence may proceed while the persist operation
is drained lazily to PM.

C. RCBSP

We describe the semantics of buffered strict persistency
under ARMv7 relaxed consistency. Memory events on the
same thread are locally ordered by:
• Executing a FENCE instruction between them in pro-

gram order. Formally:

Mi
a;F i;Mi

b→Mi
a ≤li F i ≤li Mi

b (1)

• Using an address/data/control dependence between a
memory access and a subsequent memory access in
program order. Formally:

Mi
a

d−→Mi
b→Mi

a ≤li Mi
b (2)

Further, a thread may “observe” memory events on an another
thread using “reads from” and “from reads” dependencies [34].
Formally:

Si
a

r f−→ L j
a→ Si

a ≤l j L j
a (3)

Li
a

f r−→ S j
a→ Li

a ≤l j S j
a (4)

Memory events are globally ordered across threads using
coherence and fence cumulativity [35], [36], [34], [37].

Core-0 Core-1
S0

X : St X = x
F0: FENCE
S0

Y : St Y = y
L1

Y : r1 = Ld Y
S1

Z : St Z = r1

Fig. 1: Fence cumulativity example.

Coherence: Two stores to the same address are globally
ordered, that is, all threads agree on the order of stores (from
any thread) to the same address.

∀(Si
a,S

j
a),(S

i
a ≤v S j

a)∨ (S j
a ≤v Si

a) (5)

Fence Cumulativity: Loosely, a FENCE (Fi) instruction
provides ordering in VMO between the set of all memory
accesses (from any thread) ordered before the FENCE (Group
GA) and the set of all memory accesses (from any thread)
ordered after the FENCE (Group GB). The set of memory
accesses belonging to GA can be constructed using the
following algorithm [38], [35]:

(1) ∀Mi
a |Mi

a ≤li F i,GA = GA∪Mi
a

(2) Repeat:
(3) ∀(Mi

a ∈ GA,M
j
b)|M

j
b ≤v Mi

a,GA = GA∪M j
b

(4) ∀(Mi
a ∈ GA,M

j
b)|M

j
b ≤li Mi

a,GA = GA∪M j
b

Line (1) indicates all memory accesses thread-locally or-
dered before the FENCE belong to Group GA. The next steps
recursively add to GA additional accesses transitively observed
before the FENCE. Line (3) adds all accesses ordered by VMO
before any in GA. Line (4) for each access in GA, adds accesses
ordered before it w.r.t its thread’s LMO in GA. The algorithm
stops when no new accesses can be added to GA.

Group GB is similarly constructed from accesses after the
FENCE. Once GA and GB are constructed, fence cumulativity
offers the following guarantee:

∀(Mi
a ∈ GA,M

j
b ∈ GB),Mi

a ≤v M j
b (6)

The example in Figure 1 (a variant of the ISA2 litmus
test from [34]) highlights fence cumulativity. A FENCE (F0)
instruction is executed on Core-0. So, S0

X , preceding F0, is
placed in GA. Note that S0

X is the only member of GA. S0
Y is

placed in GB. We assume that L1
Y “reads from” S0

Y , and hence
gets added to GB. The data dependency between L1

Y and S1
Z ,

requires that S1
Z gets added to GB. So, from Eq 6, we have

that S0
X ≤v S1

Z , implying that all threads can only observe S1
Z

after S0
X . Interestingly, S0

Y and Si
Z are not ordered in VMO as

they both belong to the GB.
Under strict persistency, PMO = VMO. Formally:

Mi
a ≤v M j

b ↔Mi
a ≤p M j

b (7)

Specifically under RCBSP, Eq 7, allows two behaviors:
1) Two stores to the same persistent address on different
threads will persist in coherence order.
2) Two stores to persistent addresses, one belonging to GA,

and the other belonging to GB of a FENCE (on any thread),
will persist in order (GA before GB)

D. Discussion

When programming for persistence, to guarantee two stores
persist in order, the programmer must ensure that a hypo-
thetical thread would observe the stores in the desired order.
This requirement even holds for single-threaded applications,
where programmers rarely concern themselves with memory
consistency models. Formally defining a consistency model
is a complex task [35], [36], [34], [37] and is ill-suited
to a page-limited conference paper. The intent behind the
definitions above is not to fully and precisely specify ARMv7,
but rather to highlight the ways in which a programmer can
use the memory consistency model to order persists. We have
manually verified that our RCBSP definitions enforce required
persist order for each of the litmus tests presented in [34].
(More specifically, we confirmed that RCBSP precludes re-
covery from observing outcomes forbidden by any litmus test).
Nevertheless, automatic formal verification (e.g., via a proof
assistant), is beyond the scope of this paper.

IV. DELEGATED ORDERING

We now describe delegated ordering, our implementation
strategy for RCBSP persistency.

A. Design goals

Delegated ordering is based on four key design goals:
Enforce persist ordering: Under RCBSP, the persist order

must match the store order given by the consistency model (as
is necessary for strict persistency). Under ARMv7, intra-thread
ordering arises from FENCEs, which divide the instructions
within a thread into epochs. Stores to PM from the same epoch
may persist concurrently (assuming they are not ordered by
the fence cumulativity property, Eq 6, of a remote FENCE),
however, stores from successive epochs must be totally or-
dered. Inter-thread persist ordering arises from coherence order
(Eq 5) and fence cumulativity (Eq 6). When accesses conflict,
corresponding persists (and their cumulative dependents) must
occur in cache coherence order. Our implementation must
observe, record, and enforce these persist dependencies.

Decouple data persistence from volatile execution: Under
SO, ensuring the desired persist order frequently stalls execu-
tion. RCBSP decouples persist order enforcement from thread
execution, by buffering persists in hardware.

Express lane for persists: Under SO, persists reach PM
via successive writebacks from subsequent cache levels. Such
an architecture optimizes for read performance at the ex-
pense of write latency—an appropriate trade-off for volatile
memory. However, in PM-write-intensive applications, persist
latency plays a major role in determining recoverable system
performance. Some epoch persistency implementations buffer
unpersisted stores in the cache hierarchy [7], [13]. However,
buffering unpersisted stores in cache implies that a later store
to the same address may not become globally visible until

the prior store has persisted, leading to stalls. Moreover,
performance-sensitive cache replacement policies may have
to be modified to account for the desired persist order. We
provide a separate persist path with dedicated storage that
reduces persist latency and decouples persist order from cache
eviction and store visibility.

Expose ordering constraints explicitly: Central to our
strategy is the principle of exposing ordering constraints
explicitly to the PM controller, a significant departure from SO
and conventional memory consistency implementations, which
stall to enforce order. Our intuition is that the PM controller
is the proper (indeed, only) system component that manages
the precise timing of PM reads and writes, has knowledge of
which physical addresses are assigned to which banks, and has
visibility into the conditions under which PM accesses can be
concurrent.

Prior research has proposed sophisticated schedulers at
DRAM controller to jointly optimize access latency, concur-
rency, and fairness [39], [40], [41]. Unlike DRAM controllers,
the PM controller is additionally expected to honor persist
ordering constraints. Initial research on PM-aware scheduling
is under way [8], [42]. Our goal is to communicate persist
ordering constraints to the PM controller as precisely and min-
imally as possible, providing it maximal scheduling flexibility,
and yet without placing burdens on the cache hierarchy.

Delegated ordering succeeds in decoupling persistency en-
forcement entirely from cache management. Nevertheless, the
goal of communicating minimal ordering constraints is aspi-
rational; to reduce hardware complexity, our design serializes
per-core persists into a single, partially ordered write queue
at the PM controller, which is insufficient to represent a
fully general dependence graph among persists. A single
write queue cannot represent a dependence graph where two
accesses must be ordered by an epoch boundary, but a third
access is unordered with respect to both—we must place the
third access in either the first epoch or the second, introducing
an unnecessary constraint. Nevertheless, our design provides
prodigious performance advantage; we believe the remaining
gap to the performance of unordered volatile execution does
not warrant additional hardware complexity to communicate
minimal constraints.

B. System Architecture

Figure 2 shows our system architecture to implement dele-
gated ordering for RCBSP. Responsibility for ensuring proper
persist ordering is divided between persist buffers, located
alongside each L1 D-cache, and the PM controller, which
ultimately issues persist operations. The persist buffers each
track persist requests and fences from their associated core to
discover intra-thread persist dependencies and monitor cache
coherence traffic to discover inter-thread persist dependencies.
The buffers coordinate to then serialize their per-core persist
operations into a single, partially ordered write queue at the
PM controller through the path marked “Persist requests”
in Figure 2. (We show a dedicated persist path for clarity;

PM	

PM	Cntrl	

Membus	

I$	 D$	

Core	

Persist	Buffer	

DRAM	

DRAM	Cntrl	

I$	 D$	

Core	

LLC	

Coherence	requests	

Memory	requests	

Persist	requests	

Write	Buffer	

Fig. 2: Our system architecture implementing delegated or-
dering for RCBSP, with a persist buffer at the L1 D-cache for
every core and write queue at the PM controller.

persist traffic may be multiplexed on existing interconnects,
much like uncacheable memory requests or non-temporal store
operations [28]). The persist buffers drain persists into totally
ordered epochs. The PM controller may freely schedule within
an epoch, but not across epoch boundaries.

We describe delegated ordering assuming a snooping pro-
tocol for cache coherence and to drain persists. As this design
is already quite complex, we leave generalization to non-
snooping protocols to future work.

The persist buffer bears structural similarity to a write queue
in a write-through cache (but buffers data at cache block
rather than word granularity). It supports associative lookup
by block address to facilitate coalescing and interaction with
the coherence protocol. A persist buffer is quite small; as we
will show, eight entries at most four of which may contain
FENCE operations is sufficient.

A new persist request is appended to the persist buffer every
time a store to a persistent address or a FENCE completes at
an L1 D-cache. Upon completion of the store, the entire cache
block is copied into the persist buffer entry (and later drained
to the PM as a persist request). The FENCE entries divide the
persist requests from the corresponding thread into epochs.

Persist buffer entries drain to the PM write queue when
both intra- and inter-thread persist dependencies (governed
by the PMO) have been resolved. When a FENCE drains,
it creates an epoch separator in the PM write queue, across
which persists may not be reordered. Epochs from different
persist buffers that are unordered with respect to one another
join a single epoch at the PM controller’s write queue.

Persist buffers decouple volatile execution from persist
operations, unlike synchronous ordering. Further, they also
absolve caches of the responsibility to persist data to the PM.
Caches may continue to hold and transfer ownership of data
that is buffered in persist buffers. However, when a cache block
in persistent memory is evicted from the LLC, it is silently
dropped (persist buffers ensure updates are not lost and service
subsequent reads).

C. Enforcing Dependencies

Persist buffers collaborate to jointly drain persists to the PM
write queue, constructing unified epochs that are consistent

Persist-persist Epoch-persist
Core-0 Core-1 Core-0 Core-1

St X = x St X = x
FENCE

St X = x′ St AL = a

r1 = Ld AL
St Y = r1

Fig. 3: Dependency examples.

with the persistency model ordering constraints at each core.
We first describe at a high level how we ensure a correct
drain order with reference to the example code sequences in
Figure 3. We defer details to Section IV-E.

Intra-thread dependencies are enforced by draining persists
from a persist buffer in order. It is important to note that
even though persists are drained in order, they may still coa-
lesce/reorder at the PM write queue, as long as no intervening
FENCEs have been drained (by any thread). Additionally,
adopting this simple drain policy allows us to obey fence
cumulativity dependencies without having to employ com-
plex dependency tracking mechanisms to accurately enforce
dependencies. Overall, our in-order drain policy trades off
some reordering/coalescing opportunities for a simpler design.
Inter-thread dependencies are communicated among the persist
buffers by leveraging existing coherence traffic. Dependencies
can arise between individual persists to the same address, due
to conflicting accesses, or between epochs, due to FENCE op-
erations becoming transitively ordered by conflicting accesses.

Figure 3 (left) illustrates a dependence between two persists.
Persist-persist dependencies arise when two stores to the same
persistent address are executed at two different cores. RCBSP
mandates that the two stores persist in coherence order (via
Eqs 5 and 7). At a high level, the dependency is discovered
as part of the cache coherence transaction that transfers own-
ership of the cache block from Core-0 to Core-1. Core-0 will
include in its write response an annotation with the ID of its
persist, indicating that Core-1’s persist must be ordered after
it. This annotation will prevent the persist from draining from
Core-1’s persist buffer. When Core-0 drains its persist, Core-1
will observe the drain and resolve the dependency (clear the
annotation), allowing its persist to then drain.

Figure 3 (right) illustrates a code sequence creating a
dependence between an epoch and a persist. An epoch-persist
dependency arises when an epoch and a persist on different
threads are ordered due to intervening conflicting accesses
(here via accesses to AL) and fence cumulativity. Due to the
FENCE instruction on Core-0, we have S0

X ∈GA and S0
AL
∈GB.

Since L1
AL

reads from S0
AL

, we have L1
AL
∈GB. Further, since S1

Y
is data dependent on L1

AL
(via register r1), we have S1

Y ∈ GB.
Since S0

X and S1
Y are in GA and GB respectively, via fence

cumulativity (Eq 6)) and strict persistency(Eq 7) we have
S0

X ≤p S1
Y .

In this scenario, our design ensures that the persist buffer

entry corresponding to store Y on Core-1 is drained only
after the persist buffer entry corresponding to the FENCE
instruction on Core-0, which in turn ensures that persists to X
and Y are drained to PM in order.

At a high level, the ordering between the FENCE operation
and the store (SY) is again discovered as a consequence of
the coherence transaction on the conflicting address AL. When
Core-0 receives a Read-Exclusive request for AL, it discovers
there is a preceding, undrained FENCE. Its reply includes
an annotation indicating an ordering requirement against its
FENCE. When Core-1 receives this annotation, it records the
persist ordering dependence and will enforce it against the next
persist/FENCE it encounters, which in this case is the persist
buffer entry of the store to Y .

A particular challenge of this mechanism is that ordering
relationships between epochs (FENCE operations) and per-
sists can arise due to conflicting accesses to volatile as well
as persistent addresses. In ARMv7, causal ordering between
two FENCE operations or FENCE-persist operations is es-
tablished by any conflicting access pair. Therefore, the persist
buffers must detect and honor ordering constraints established
through volatile memory accesses. Indeed, in the example,
we label the conflicting address AL as it represents a lock or
other synchronization variable, which likely resides in volatile
memory.

To detect all conflicting accesses that follow a FENCE,
the persist buffer must keep a record of all addresses read
or written by its core until either the FENCE drains or the
processor executes a subsequent FENCE. Incoming coherence
requests must be checked against the read- and write-sets to
detect conflicts and discover dependencies. This requirement
is similar to the read- and write-set tracking required to im-
plement transactional memory [43]. As in many transactional
memory designs, these sets may be maintained approximately,
because false positives (identifying a conflict when there is
none) introduce unnecessary persist ordering edges, but do not
compromise correctness. However, given that the lifetime of
a FENCE in the persist buffer is much smaller than an entire
transaction, a simple design would suffice. We enumerate the
steps of this exchange in detail in Section IV-E.

Note that persist-epoch and epoch-epoch dependencies may
also arise, and are enforced by the hardware structures de-
scribed in Section IV-D. It is also important to note that by
tracking dependencies at an individual persist or FENCE gran-
ularity, our design does not suffer from the epoch dependency
deadlocks identified in [13]. We omit examples in the interest
of space.

D. Hardware Structures

Next, we describe the hardware structures required for
delegated ordering. At each core, we provision a persist buffer,
a pair of bloom filters for tracking read and write sets, and
a register for tracking accumulated ordering dependences that
must be applied to a yet-to-be-executed FENCE or persist.
Persist requests and FENCE operations drain from persist

ID	 T	 Y	 A	
DP	

Data	

.	.	.	

Read-set	

AccumDP	

Write-set	

X4	

X4	8		
Entries	

56	bits	+	1	cache	block	

Fig. 4: HW structures at each core.

buffers into the write queue at the PM controller. Figure 4
illustrates the hardware and fields in these structures.

Persist Buffer. The persist buffer is the key structure that
buffers pending persist requests while the core continues
executing. Each persist buffer entry contains either a persist
operation or a FENCE. We briefly describe each field:

• T - The “Type”; persist request or fence.
• A - The cache block “Address” of a persist request;

supports associative search by address. For FENCEs, this
field associates the entry with a read/write-set.

• D - The “Data” cache block to be persisted.
• ID - An “ID” that uniquely identifies each in-flight persist

or FENCE, comprising the core id and entry index. These
IDs are used to track and resolve dependencies across
persist buffers. We denote IDs as “{Core index}:{Entry
index}”.

• Y - The “Youngest” bit, marks the youngest persist
request to a particular address across all persist buffers.
This bit is set when a persist request is appended to the
buffer and reset upon an invalidation of the cache block,
indicating a subsequent store by another core. When set,
this bit indicates this persist buffer must service coherence
requests for the address.

• DP - An array of inter-thread dependencies for this
entry. The number of fields in each “DP” entry is one
less than the number of persist buffers, tracking at most
one dependency from each other core. An entry can be
drained to PM only when all its dependencies have been
resolved (drained to PM write queue). The dependencies
are tracked via IDs; When an ID drains on the persist
bus, matching “DP” fields are cleared.

Read/Write Sets & AccumDP. We provision pairs of bl-
oom filters to track addresses accessed by the core after a
FENCE, as described in Section IV-C. Each persist buffer also
requires an additional dependence (“AccumDP”) register that
is not associated with any persist buffer entry. “AccumDP”
tracks dependences that are discovered via cache coherence
and must be applied as order constraints against the next
persist/FENCE issued by the core. When a persist or FENCE
is appended to the persist buffer, its “DP” field is initialized
from “AccumDP” and “AccumDP” is cleared.

PM Write Queue. The PM Write Queue, like buffers in
a conventional memory controller, holds writes until they are
issued to the PM storage array. When a FENCE operation

D$0	

ID	
 A	
 D	
 DP	

0:0	
 X	
 x	
 -­‐	

D$1	

ID	
 A	
 D	
 DP	

1:0	
 X	
 x’	
 0:0	

To	
 L2	
 To	
 Membus	

St	
 X	
 =	
 x	

1	

2	

St	
 X	
 =	
 x’	

3	

4	
 6	

8	
 9	

5	

7	

Fig. 5: Resolving a persist-persist dependency.

is drained from a persist buffer, it creates an epoch boundary
across which persists may not be reordered.

Overheads. The storage overhead for each persist buffer
entry is 72B. Considering the short duration a FENCE spends
in the persist buffer (due to the aggressive draining employed
at the persist buffer), we use 32B bloom filters. An AccumDP
register of 64B stores dependencies from all other persist
buffers. In all, each persist buffer requires 8 persist buffer
entries, 8 bloom filters for read/write sets (a maximum of 4
active FENCE entries are allowed in a persist buffer) and one
AccumDP register, placing the storage overhead at 896B/core.
It is important to note that if a persist buffer becomes full
(either due to exhaustion of entries or FENCE slots), the
corresponding L1-D$ is blocked until an entry drains from
the persist buffer. The results presented in Section V account
for all such blockages.

E. Detailed Examples.

We next walk through detailed examples that illustrate how
persist buffers track inter-thread dependencies, with the aid of
Figures 5 and 6

Persist-persist dependency. Figure 5 depicts the evolution
of the persist buffer state for a persist-persist dependency (see
Figure 3).

(1) D$0 receives a store request to a persistent address X .
For simplicity, assume a cache hit at D$0. (2) A new value
x is written to the cache for address X , and a persist request
for X is appended to the persist buffer at D$0 with ID “0:0”.
Its address is set to X , the cache block data (x) is copied
into the buffer, and the Y (Youngest) bit is set. Assume that
there were no earlier dependencies for the store to X , so DP
is cleared. (3) D$1 receives a store request to address X . (4)
D$1 sends a read-exclusive request to D$0. (5) D$0 receives
the read-exclusive request and snoops both the cache and the
persist buffer. In the persist buffer, it finds a match with the
Y bit set. It copies the value x into the response, invalidates
the line in the cache, and clears the Y bit in the persist buffer.
The coherence reply includes an annotation with ID “0:0” as
a dependence. (6) D$1 receives the response with the latest

D$0	

ID	 A	 D	 DP	

0:0	 X	 x	 -	

D$1	

ID	 A	 D	 DP	

To	L2	 To	Membus	

St	X	=	x	1	 FENCE	3	 St	AL	=	a	5	

0:1	 -	 -	 -	

r1	=	Ld	AL	7	 St	Y	=	r1	

write-set:	a	

4	

8	
13	

12	

1:0	 Y	 y	 0:1	2	

9	

10	

11	6	

AccumDP:	0:1	

Fig. 6: Resolving an epoch-persist dependency.

data for X and the dependence annotation. (7) D$1 completes
the store, creates a new persist request in its persist buffer,
marking ID “0:0” as a dependency to its persist “1:0”. (8)
Persist buffer at D$0 entry “0:0” has no dependencies and is
thus eligible to drain. It now does so, broadcasting its drain
request to all persist buffers and the PM controller. (9) Persist
buffer at D$1 observes that persist “0:0” has drained, resolves
the dependency for persist “1:0” and subsequently drains it.

Epoch-Persist dependency. Figure 6 depicts the evolution
of the persist buffer state an epoch-persist dependency.

(1) D$0 receives a store request to a persistent address
X . Assume that it hits at D$0. (2) A new persist request
is created for X with ID “0:0”. Assume no dependencies.
(3) D$0 receives a FENCE request. (4) A new entry is
created for the FENCE with ID “0:1”. (Gray entries indicate
a FENCE). (5) D$0 receives a store request to a volatile
address AL. Assume it hits at D$0. (6) The volatile address
AL is recorded in the write-set associated with the FENCE.
(7) D$1 receives a load request for address AL. (8) D$1 sends
a read request for address AL to D$0. (9) D$0 snoops its cache
and persist buffer, locating its cached copy of AL. Since it has
a pending FENCE, it compares address AL to the write-set of
the FENCE and discovers a match, indicating a persist order
dependence. The coherence response is annotated to indicate a
FENCE with ID “0:1” as a dependence. (10) D$1 receives the
response with the latest data for AL and the persist dependency
annotation. (11) D$1 updates its “AccumDP” register to store
the dependence on “0:1”. This dependence will be applied to
the next persist/FENCE instruction executed at D$1. (12) D$1
receives a store request to a persistent address Y . Assume it
results in a cache hit at D$1. (13) A new persist request is
created with ID “1:0”. The dependence on “0:1” from the
“AccumDP” register is recorded and the register is cleared.

The persist at D$1 with ID “1:0” will not be permitted
to drain until D$0 broadcasts the drain of FENCE “0:1”,
ensuring that the persists to X and Y fall into successive epochs
at the PM controller.

We note that our hardware might be substantially simplified

under a programming model where conflicting accesses must
be explicitly annotated as synchronization accesses, such as
the DRF0 model [30]. In such models, only synchronization
accesses may create ordering relationships between epochs
in properly labeled programs. Unfortunately, ARMv7 does
not mandate that racing accesses be annotated, requiring the
additional complexity of the read- and write-set tracking.

F. Coalescing Persists
One of the aims of our design is to enable persist operations

to coalesce, where allowed by the persistency model, to
improve performance and reduce the total number of PM
writes. Coalescing may occur at two points. First, an incoming
persist may coalesce with the most recent persist in the
persist buffer if: (1) they are to the same cache block, (2)
“accumDP” is empty and (3) the “Youngest” bit is still set. The
implications of fence cumulativity require these restrictions.
Sophisticated schemes may enable more coalescing, but would
require complex tracking to ensure all persist dependencies are
properly enforced. Second, persists may coalesce in the PM
write queue, even if issued by different cores, provided they
do not cross an epoch boundary.

In our design, we drain persist operations eagerly at both
the persist buffer and PM write queue, as soon as ordering
constraints allow. However, in the absence of a FENCE, it
may be advantageous to delay persist operations in an attempt
to coalesce more persists. The PM-write-intensive benchmarks
we study do not afford additional coalescing opportunity, so
we leave such optimizations to future work.

V. EVALUATION

Core

8-cores, 2GHz OoO
6-wide Dispatch, 8-wide Commit
40-entry ROB
16/16-entry Load/Store Queue

I-Cache 32kB, 4-way, 64B
1ns cycle hit latency, 2 MSHRs

D-Cache 64kB, 4-way, 64B
2ns hit latency, 6 MSHRs

L2-Cache 8MB, 16-way, 64B
16ns hit latency, 16 MSHRs

Memory controller 64/32-entry write/read queue(DRAM, PM)
DRAM DDR3, 800MHz
PCM 533MhZ, timing from [44]

TABLE II: Simulator Configuration.

We compare delegated ordering against synchronous order-
ing for three different memory designs: DRAM, PCM, and
PWQ (described in Section II-B. We model DDR3 DRAM
operating at 800MHz and PCM using timing parameters
derived from [44] operating at 533MHz. We use PCM memory
assumptions for PWQ. The PWQ design isolates the effect of
fences and ordering instructions from PM access latency, while
DRAM and PCM provide plausible performance projections.
We model an 8-core system with ARM A15 cores in gem5 [26]
using the configuration details in Table II. RCBSP uses an 8-
entry persist buffer at each core, allowing at most four in-flight
FENCEs.

It is important to note that gem5 implements a conservative
multi-copy atomic version of ARMv7 consistency. Whereas
ARMv7 allows non-store-atomic systems, there is reason to
believe that, in practice, multi-copy atomicity may be provided
(for example, Tegra 3 forbids some litmus test outcomes
normally observed for non-store-atomic systems [34]). Nev-
ertheless, we have presented an RCBSP design that is also
correct for non-store-atomic systems.

Benchmark Description CKC

Conc. queue Insert/Delete entries in a queue 1.2
Array Swaps Random swaps of array elements 7.1
TATP Update location transaction in TATP [45] 4.5
RB Tree Insert/Delete entries in a Red-Black tree 0.1
TPCC New Order transaction in TPCC [46] 0.8

TABLE III: Benchmarks. CKC = clwbs per 1000 cycles

Benchmarks: We study a suite of five PM-centric multi-
threaded benchmarks, described in Table III. Our Concurrent
Queue is similar to that of Pelley [4]. The Array Swaps and
RB Tree are similar to those in NV-Heaps [10]. Our TATP [45]
and TPCC [46] benchmarks execute the “update location”
and “new order” transactions, respectively the benchmark’s
most write-intensive transactions. We select these benchmarks
specifically because they stress PM write performance; larger
applications may amortize slowdown of PM-write-intensive
phases over periods of volatile execution. As a heuristic for
the “write-intensive”ness of the benchmarks, we report the
number of clwbs issued per 1000 cycles per core (CKC) in
Table III. Array Swaps is our most write-intensive benchmark
while RB Tree is the least, so we expect them to show the
most and least sensitivity to persistency models, respectively.

A. Performance Comparison

Figure 7 contrasts the performance of RCBSP with SO, for
three different memory designs: PWQ, DRAM, and PCM. Ex-
ecution times in the figure are normalized to volatile execution
with the corresponding memory design. The main takeaways
from the figure are:
RCBSP outperforms SO: RCBSP consistently outperforms
SO in nearly all cases. On average, RCBSP reduces the cost
of persistence from 1.54× to 1.21×, 2.97× to 1.18×, and
7.21× to 1.93× for PWQ, DRAM, and PCM, respectively. It
is particularly noteworthy that RCBSP outperforms SO even
with PWQ for all workloads; even though PWQ hides the
entire write latency of the memory device, the clwb latency
exposed by SO still incurs noticeable delays that are hidden
by RCBSP.
SO sensitivity to memory design: The performance of SO
gets progressively worse for PWQ, DRAM, and PCM for each
workload. This behavior is to be expected, as PWQ, DRAM,
and PCM expose increasing memory access latencies on the
critical path.
RCBSP sensitivity to memory design: The performance
overheads of RCBSP are similar for PWQ and DRAM, and,
as expected PCM is a distant third. Similar performance with

0	

2	

4	

6	

8	

10	

PWQ	 DRAM	 PCM	 PWQ	 DRAM	 PCM	 PWQ	 DRAM	 PCM	 PWQ	 DRAM	 PCM	 PWQ	 DRAM	 PCM	 PWQ	 DRAM	 PCM	

Concurrent	Queue	 Array	Swap	 TATP	 RB	Tree	 TPCC	 GEOMEAN	

SO	 RCBSP	35.15	 15.75	
N
or
m
al
iz
ed

	e
xe
cu
/o

n	
/m

e	

Fig. 7: Normalized execution time for PWQ, DRAM, and PCM.

PWQ and DRAM is due to two competing factors: (1) The
main memory technology in PWQ is PCM, which is slower
than DRAM—advantage DRAM. (2) PWQ has fewer ordering
constraints on persists draining from the memory controller
write queue—advantage PWQ. Moreover, we employ a 64-
entry write queue at the memory controller, which hides most
of the memory access latency for DRAM.
Least affected: For both SO and RCBSP, as expected, RB
Tree incurs the least cost of persistence.
Most affected: Under SO, Array Swaps incurs the highest
cost of persistence for DRAM and PCM, while Concurrent
Queue is the most affected for PWQ. Under RCBSP, Array
Swaps is the most affected for PWQ and PCM, Concurrent
Queue suffers the highest slowdowns for DRAM. Array swaps
is our most write-intensive benchmarks and its high costs of
persistence are to be expected. It is interesting to observe
that Concurrent Queue is most-affected in certain scenarios,
because it exhibits the least thread concurrency among our
benchmarks. Threads frequently contend for the enqueue and
dequeue locks, causing clwb latencies to be exposed on the
critical path of lock handoffs for SO under PWQ, which is
then reflected in the overall execution time. For RCBSP, the
high thread contention results in severely constrained drain
order of persists at the PM controller, which increases overall
execution time.
Persist buffer configuration: We studied the performance of
RCBSP with different persist buffer configurations, varying
the size of the buffer and the number of supported active
FENCEs. We found that an 8-entry buffer supporting four
simultaneously active FENCEs provided the best trade-off
between hardware overhead and performance.
PM wear out: PMs like PCM suffer from wear out due to
writes. RCBSP increases the overall writes to PM by 30%,
averaged over all the benchmarks. This increase is to be
expected as RCBSP is a hardware mechanism that tries to
aggressively move persists from persist buffers to the PM write
queue, while SO has the advantage of programmer inserted
clwb instructions as triggers for writebacks, allowing better
coalescing. Nevertheless, effective wear-leveling schemes have
been proposed [47], [48], [49] to mitigate wear out and those
solutions are orthogonal to persistency models and may be

deployed with RCBSP.
Overall, RCBSP outperforms SO by 1.28× (PWQ),

2.58× (DRAM), and 3.73× (PCM) on average and by up to
8.23×.

VI. RELATED WORK

We briefly discuss related hardware designs that seek to
facilitate the adoption of PM in future systems. We broadly
classify works into five categories based on the write-ordering
guarantees they provide.

No ordering: Apart from durability, cost, scalability, and
energy efficiency may make PMs an attractive alternative
to DRAM. Some hardware designs focus on PM only as a
scalable replacement for DRAM [29], [49] and don’t seek to
use PM’s non-volatility. Deploying PM as a volatile memory
alternative requires addressing media-specific issues, such as
wear-leveling [47], [48], [49], slow writes [50], [51], [52],
and resistance drift [53]. These techniques are essential and
orthogonal to our use PM.

Persistent caches: By making the caches themselves per-
sistent, some proposals ensure that stores become durable
as they execute, obviating the need for a persistency model.
Cache persistence can be achieved by building cache arrays
from non-volatile devices [16], [5], by ensuring that a battery
backup is available to flush the contents of caches to PM upon
power failure [17], [18], or by not caching PM accesses [16].
However, integrating NV devices in high performance logic
poses manufacturing challenges, present NV access latencies
(e.g., for STT-RAM) are more suitable for the LLC than
all cache levels [5], and it is not clear if efficient backup
mechanisms are available for systems with large caches. Our
approach assumes volatile caches.

Synchronous ordering: SO (see Section II) is our attempt
to formalize the persistency model implied by Intel’s recent
ISA extensions [3]. Without these extensions, it may be
impossible to ensure proper PM write order in some x86
systems [27]. Mnemosyne [6] and REWIND [54] use SO
to provide transaction systems optimized for PM. Atlas [11],
uses it to provide durability semantics for lock-based code.
SCMFS [55] uses SO to provide a PM-optimized file system.
SO provides few opportunities to overlap program execution
and persist operations and Bhandari et al. [28] show that

write-through caching sometimes provides better performance.
We propose delegated ordering to increase overlap between
program execution and persist operations.

Epoch barriers: As proposed in BPFS [7], epoch barriers
divide program execution into epochs in which stores may
persist concurrently. Stores from different epochs must persist
in order. BPFS [7] implements epoch barriers by tagging all
cache blocks with the current epochID (incremented after
every epoch barrier instruction) on every store, and modifying
the cache replacement policy to write epochs back to PM in
order in a lazy fashion. This approach allows for more overlap
of program execution and persist operations (no need to stall
at epoch barriers) than SO. However, BPFS is tightly coupled
with cache management, restricting cache replacements and
suffers from some other drawbacks of SO, such as discarding
write permissions as epochs drain from the cache. Pelley
et al. [4] propose a subtle variation of epoch barriers, and
show the potential performance improvement due to a better
handling of inter-thread persist dependencies. Joshi et al. [13]
define efficient persist barriers to implement buffered epoch
persistency. However, Joshi does not study persistency models
with a detailed PM controller, which is a central theme of our
work. Delegated ordering fully decouples cache management
from the path persistent writes take to memory and requires
no changes to the cache replacement policy.

Other: Kiln [5] and LOC [56] provide a storage transaction
interface (providing Atomicity, Consistency and Durability) to
PM, wherein the programmer must ensure isolation. Kiln [5]
employs non-volatile LLCs and leverages the inherent ver-
sioning of data in the caches and main memory to gain
performance. LOC [56] reduces intra- and inter-transaction
dependencies using a combination of custom hardware logging
mechanisms and multi-versioning caches. Pelley [4] explores
several persistency models, which range from conservative
(strict persistency) to very relaxed (strand persistency) and
shows the potential performance advantages of exposing ad-
ditional persist concurrency to the PM controller. However,
Pelley does not propose hardware implementations for the
persistency models. FIRM [8] and NVM-Duet [42] optimize
memory scheduling algorithms to manage resource allocation
at the memory controller to optimize for performance and
application fairness while respecting the constraints on the
order of persists to PM.

VII. CONCLUSIONS AND FUTURE WORK

Future systems will provide a load-store interface to PM,
allowing persistent data structures in memory. Recoverability
of these data structures relies on the programmer’s ability to
order PM updates, leading industry and academia to propose
programming interfaces to prescribe ordering.

We show that synchronous ordering (based on Intel’s recent
ISA extensions for PM) incurs 7.21× slowdown on average
over volatile execution for write-intensive benchmarks. SO
conflates enforcing order and flushing writes to PM, incurring
frequent stalls and poor performance. We show that forward
progress can be effectively decoupled from PM write ordering

by delegating ordering requirements explicitly to the PM. Our
approach outperforms SO by 3.73× on average.

While our RCBSP implementation provides substantial per-
formance improvement over SO, our design, as presented, is
limited to systems which employ snoop-based coherence and
have a single PM controller. We are looking into extending
our design to work with systems with directory coherence and
multiple PM controllers.

VIII. ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers for their
valuable feedback. This work was supported by the National
Science Foundation under the award NSF-CCF-1525372.

REFERENCES

[1] Intel and Micron, “Intel and micron produce breakthrough memory
technology,” 2015, http://newsroom.intel.com/community/intel
newsroom/blog/2015/07/28/intel-and-micron-produce-breakthrough-
memory-technology.

[2] C. World, “Hp and sandisk partner to bring storage-class memory to
market,” 2015, http://www.computerworld.com/article/2990809/data-
storage-solutions/hp-sandisk-partner-to-bring-storage-class-memory-
to-market.html.

[3] Intel, “Intel architecture instruction set extensions programming refer-
ence (319433-022),” 2014, https://software.intel.com/sites/default/files/
managed/0d/53/319433-022.pdf.

[4] S. Pelley, P. M. Chen, and T. F. Wenisch, “Memory persistency,” in Pro-
ceedings of the 41st International Symposium on Computer Architecture,
2014.

[5] J. Zhao, S. Li, D. H. Yoon, Y. Xie, and N. P. Jouppi, “Kiln: Closing the
performance gap between systems with and without persistence support,”
in Proceedings of 46th International Symposium on Microarchitecure,
2013.

[6] H. Volos, A. J. Tack, and M. M. S. E, “Mnemosyne: Leightweight
persistent memory,” in Proceedings of the 16th International Conference
on Architectural Support for Programming Languages and Operating
Systems, 2011.

[7] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee, D. Burger, and
D. Coetzee, “Better i/o through byte-addressable, persistent memory,”
in Proceedings of the 22nd ACM Symposium on Operating Systems
Principles, 2009.

[8] J. Zhao, O. Mutlu, and Y. Xie, “Firm: Fair and high-performance
memory control for peristent memory systems,” in Proceedings of 47th
International Symposium on Microarchitecure, 2014.

[9] V. Chidambaram, T. S. Pillai, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau, “Optimistic crash consistency,” in Proceedings of the 24th
ACM Symposium on Operating Systems Principles, 2013.

[10] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp, R. K. Gupta, R. Jhala,
and S. Swanson, “Nv-heaps: Making persistent objects fast and safe
with next-generation, non-volatile memories,” in Proceedings of the 16th
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2011.

[11] D. R. Chakrabarti, H.-J. Boehm, and K. Bhandari, “Atlas: leveraging
locks for non-volatile memory consistency,” in Proceedings of the
Conference on Object-Oriented Programming, Systems, Languages, and
Applications, 2014.

[12] H.-J. Boehm and D. R. Chakrabarti, “Persistence programming models
for non-volatile memory,” Hewlett-Packard, Tech. Rep. HPL-2015-59,
2015.

[13] A. Joshi, V. Nagarajan, M. Cintra, and S. Viglas, “Efficient persist
barriers for multicores,” in Proceedings of the international symposium
on Microarchitecture, 2015.

[14] A. Kolli, S. Pelley, A. Saidi, P. M. Chen, and T. F. Wenisch, “High-
performance transactions for persistent memories,” in Proceedings of
the Twenty-First International Conference on Architectural Support for
Programming Languages and Operating Systems, 2016.

[15] J. Izraelevitz, T. Kelly, and A. Kolli, “Failure-atomic persistent memory
updates via justdo logging,” in Proceedings of the Twenty-First Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems, 2016.

[16] T. Wang and R. Johnson, “Scalable logging through emerging non-
volatile memory,” Proceedings of the VLDB Endowment, vol. 7, no. 10,
pp. 865–876, June 2014.

[17] D. Narayanan and O. Hodson, “Whole-system persistence,” in Proceed-
ings of the 17th International Conference on Architectural Support for
Programming Languages and Operating Systems, 2012.

[18] F. Nawab, D. Chakrabarti, T. Kelly, and C. B. M. III, “Procrastina-
tion beats prevention: Timely sufficient persistence for efficient crash
resilience,” Hewlett-Packard, Tech. Rep. HPL-2014-70, December 2014.

[19] G. R. Ganger, M. K. McKusick, C. A. N. Soules, and Y. N. Patt, “Soft
Updates: A Solution to the Metadata Update Problem in File Systems,”
ACM Transactions on Computer Systems, vol. 18, no. 2, May 2000.

[20] C. Blundell, M. M. Martin, and T. F. Wenisch, “Invisifence:
Performance-transparent memory ordering in conventional multiproces-
sors,” in Proceedings of the 36th Annual International Symposium on
Computer Architecture, 2009.

[21] T. F. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos, “Mechanisms
for store-wait-free multiprocessors,” in Proceedings of the 34th Annual
International Symposium on Computer Architecture, 2007.

[22] L. Ceze, J. Tuck, P. Montesinos, and J. Torrellas, “Bulksc: Bulk
enforcement of sequential consistency,” in Proceedings of the 34th
Annual International Symposium on Computer Architecture, 2007.

[23] C. Gniady, B. Falsafi, and T. N. Vijaykumar, “Is sc + ilp = rc?” in
Proceedings of the 26th Annual International Symposium on Computer
Architecture, 1999.

[24] P. Ranganathan, V. S. Pai, and S. V. Adve, “Using speculative retirement
and larger instruction windows to narrow the performance gap between
memory consistency models,” in Proceedings of the Ninth Annual ACM
Symposium on Parallel Algorithms and Architectures, 1997.

[25] K. Gharachorloo, A. Gupta, and J. Hennessy, “Two techniques to
enhance the performance of memory consistency models,” in In Pro-
ceedings of the 1991 International Conference on Parallel Processing,
1991.

[26] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 simulator,”
SIGARCH Comput. Archit. News, vol. 39, no. 2, pp. 1–7, Aug. 2011.

[27] S. R. Dulloor, S. Kumar, A. Keshavamurthy, P. Lantz, D. Reddy,
R. Sankaran, and J. Jackson, “System software for persistent memory,”
in Proceedings of the 9th European Conference on Computer Systems,
2014.

[28] K. Bhandari, D. R. Chakrabarti, and H.-J. Boehm, “Implications of
cpu caching on byte-addressable non-volatile memory programming,”
Hewlett-Packard, Tech. Rep. HPL-2012-236, December 2012.

[29] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting phase change
memory as a scalable dram alternative,” in Proceedings of the 36th
Annual International Symposium on Computer Architecture, 2009.

[30] S. V. Adve and K. Gharachorloo, “Shared memory consistency models:
A tutorial,” IEEE Computer, vol. 29, no. 12, pp. 66–76, December 1996.

[31] ARM, “Armv8-a architecture evolution,” 2016, https://community.
arm.com/groups/processors/blog/2016/01/05/armv8-a-architecture-
evolution.

[32] ——, ARM Architecture Reference Manual. ARM, 2007.
[33] A. Kolli, S. Pelley, A. Saidi, P. M. Chen, and T. F. Wenisch, “Persistency

programming 101,” 2015, http://nvmw.ucsd.edu/2015/assets/abstracts/
33.

[34] M. Luc, S. Inria, Sarkar, and P. Sewell, “A tutorial introduction to the
arm and power relaxed memory models,” 2012.

[35] D. Lustig, C. Trippel, M. Pellauer, and M. Martonosi, “Armor: Defend-
ing against memory consistency model mismatches in heterogeneous
architectures,” in Proceedings of the 42Nd Annual International Sympo-
sium on Computer Architecture, 2015.

[36] S. Sarkar, P. Sewell, J. Alglave, L. Maranget, and D. Williams,
“Understanding power multiprocessors,” in Proceedings of the 32Nd
ACM SIGPLAN Conference on Programming Language Design and
Implementation, 2011.

[37] J. Alglave, L. Maranget, and M. Tautschnig, “Herding cats: Modelling,
simulation, testing, and data-mining for weak memory,” in Proceedings
of the 35th ACM SIGPLAN Conference on Programming Language
Design and Implementation, 2014.

[38] ARM, “Barrier litmus tests and cookbook,” 2009, http:
//infocenter.arm.com/help/topic/com.arm.doc.genc007826/Barrier
Litmus Tests and Cookbook A08.pdf.

[39] R. Ausavarungnirun, K. K.-W. Chang, L. Subramanian, G. H. Loh,
and O. Mutlu, “Staged memory scheduling: schieving high performance
and scalability in heterogeneous systems,” in In Proceedings of the
International Symposium on Computer Architecture, 2012.

[40] Y. Kim, D. Han, O. MUtlu, and M. Harchol-Balter, “Atlas: A scalable
and high-performance scheduling algorithm for multiple memory con-
trollers,” in In Proceedings of the International Symposium on High
Performance Computer Architecture, 2010.

[41] Y. Kim, M. Papamichael, O. Mutlu, and M. Harchol-Balter, “Thread
cluster memory scheduling: Exploiting differences in memory access
behavior,” in In Proceedings of the International Symposium on Mi-
croarchitecture, 2010.

[42] R.-S. Liu, D.-Y. Shen, C.-L. Yang, S.-C. Yu, and C.-Y. M. Wang,
“Nvm duet: unified working memory and persistent store architecture,”
in Proceedings of the international conference on Architectural Support
for Programming Languages an Operating Systems, 2014.

[43] T. Harris, J. Larus, and R. Rajwar, Transactional memory. Morgan &
Claypool Publishers, 2010.

[44] C. Xu, D. Niu, N. Muralimanohar, R. Balasubramonian, T. Zhang, S. Yu,
and Y. Xie, “Overcoming the challenges of crossbar resistive memory
architectures,” in In Proceedings of the International Symposium on High
Performance Computer Architecture, 2015.

[45] S. Neuvonen, A. Wolski, M. Manner, and V. Raatikka, “Telecom appli-
cation transaction processing benchmark,” 2011, http://tatpbenchmark.
sourceforge.net/.

[46] T. P. P. C. (TPC), “Tpc benchmark b,” 2010, http://www.tpc.org/tpc
documents current versions/pdf/tpc-c v5-11.pdf.

[47] M. K. Qureshi, M. M. Franchescini, V. Srinivasan, L. A. Lastras,
B. Abali, and J. Karidis, “Enhancing lifetime and security of pcm-
based main memory with start-gap wear leveling,” in Proceedings of
the International Symposium on Microarchitecture, 2009.

[48] M. K. Qureshi, A. Seznec, L. A. Lastras, and M. M. Franchescini,
“Practical and secure pcm systems by online detection of malicious
write streams,” in Proceedings of the 17th International Symposium on
High Performance Computer Architecture, 2011.

[49] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A durable and energy efficient
main memory using phase change memory technology,” in Proceedings
of the 36th International Symposium on Computer Architecture, 2009.

[50] J. Yue and Y. Zhu, “Accelerating write by exploiting pcm asymmetries,”
in Proceedings of the International Symposium on High Performance
Computer Architecture, 2013.

[51] S. Cho and H. Lee, “Flip-n-write: a simple deterministic technique to
improve pram write performance, energy and endurance,” in Proceedings
of the International Symposium on Microarchitecture, 2009.

[52] A. Hay, K. Strauss, T. Sherwood, G. H. Loh, and D. Burger, “Preventing
pcm banks from seizing too much power,” in Proceedings of the
International Symposium on Microarchitecture, 2011.

[53] M. Awasthi, M. Shevgoor, K. Sudan, B. Rajendran, and R. Balasubramo-
nian, “Efficient scrub mechanisms for error-prone emerging memories,”
in Proceedings of the International Symposium on High Performance
Computer Architecture, 2012.

[54] A. Chatzistergiou, M. Cintra, and S. D. Vaglis, “Rewind: Recovery write-
ahead system for in-memory non-volatile data structures,” Proceedings
of the VLDB Endowment, vol. 8, no. 5, 2015.

[55] X. Wu and A. L. N. Reddy, “Scmfs: a file system for storage class
memory,” in In Proceedings of the International Conference for High
Performance Computing, 2011.

[56] Y. Lu, J. Shu, L. Sun, and O. Mutlu, “Loose-ordering consistency for
persistent memory,” in Proceedings of the 32nd IEEE International
Conference on Computer Design, 2014.

